Haloferax volcanii, a Prokaryotic Species that Does Not Use the Shine Dalgarno Mechanism for Translation Initiation at 5′-UTRs
نویسندگان
چکیده
It was long assumed that translation initiation in prokaryotes generally occurs via the so-called Shine Dalgarno (SD) mechanism. Recently, it became clear that translation initiation in prokaryotes is more heterogeneous. In the haloarchaeon Haloferax volcanii, the majority of transcripts is leaderless and most transcripts with a 5'-UTR lack a SD motif. Nevertheless, a bioinformatic analysis predicted that 20-30% of all genes are preceded by a SD motif in haloarchaea. To analyze the importance of the SD mechanism for translation initiation in haloarchaea experimentally the monocistronic sod gene was chosen, which contains a 5'-UTR with an extensive SD motif of seven nucleotides and a length of 19 nt, the average length of 5'UTRs in this organism. A translational fusion of part of the sod gene with the dhfr reporter gene was constructed. A mutant series was generated that matched the SD motif from zero to eight positions, respectively. Surprisingly, there was no correlation between the base pairing ability between transcripts and 16S rRNA and translational efficiency in vivo under several different growth conditions. Furthermore, complete replacement of the SD motif by three unrelated sequences did not reduce translational efficiency. The results indicate that H. volcanii does not make use of the SD mechanism for translation initiation in 5'-UTRs. A genome analysis revealed that while the number of SD motifs in 5'-UTRs is rare, their fraction within open reading frames is high. Possible biological functions for intragenic SD motifs are discussed, including re-initiation of translation at distal genes in operons.
منابع مشابه
Experimental Characterization of Cis-Acting Elements Important for Translation and Transcription in Halophilic Archaea
The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5'-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5'-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species ...
متن کاملProtein biogenesis in Archaea: addressing translation initiation using an in vitro protein synthesis system for Haloferax volcanii.
Translation initiation in Archaea combines aspects of the parallel process in Eukarya and Bacteria alongside traits unique to this domain. To better understand translation initiation in Archaea, an in vitro translation system from the haloarchaeon Haloferax volcanii has been developed. The ability to translate individual mRNAs both under the conditions used in previously developed poly(U)-depen...
متن کاملAnalysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various prokaryotes
MOTIVATION It is well accepted that the 3' end of 16S rRNA is directly involved in prokaryotic translation initiation by pairing with the Shine-Dalgarno (SD) sequence, which is located in the ribosome-binding site of mRNA. According to Shine and Dalgarno, Escherichia coli 's 5' UTR has the pattern of 'AGGAGG' (SD sequence), which is complementary to the 3' end sequence of 16S rRNA. In this work...
متن کاملLocal Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-Binding Sites
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unk...
متن کاملMultiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5'-untranslated region (5'-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chlorop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014